7,796 research outputs found

    Post processing of differential images for direct extrasolar planet detection from the ground

    Get PDF
    The direct imaging from the ground of extrasolar planets has become today a major astronomical and biological focus. This kind of imaging requires simultaneously the use of a dedicated high performance Adaptive Optics [AO] system and a differential imaging camera in order to cancel out the flux coming from the star. In addition, the use of sophisticated post-processing techniques is mandatory to achieve the ultimate detection performance required. In the framework of the SPHERE project, we present here the development of a new technique, based on Maximum A Posteriori [MAP] approach, able to estimate parameters of a faint companion in the vicinity of a bright star, using the multi-wavelength images, the AO closed-loop data as well as some knowledge on non-common path and differential aberrations. Simulation results show a 10^-5 detectivity at 5sigma for angular separation around 15lambda/D with only two images.Comment: 12 pages, 6 figures, This paper will be published in the proceedings of the conference Advances in Adaptive Optics (SPIE 6272), part of SPIE's Astronomical Telescopes & Instrumentation, 24-31 May 2006, Orlando, F

    A strong form of the Quantitative Isoperimetric inequality

    Full text link
    We give a refinement of the quantitative isoperimetric inequality. We prove that the isoperimetric gap controls not only the Fraenkel asymmetry but also the oscillation of the boundary

    The giant radio halo in Abell 2163

    Get PDF
    New radio data is presented for the rich cluster Abell 2163. The cluster radio emission is characterized by the presence of a radio halo, which is one of the most powerful and extended halos known so far. In the NE peripheral cluster region, we also detect diffuse elongated emission, which we classify as a cluster relic. The cluster A2163 is very hot and luminous in X-ray. Its central region is probably in a highly non relaxed state, suggesting that this cluster is likely to be a recent merger. The existence of a radio halo in this cluster confirms that halos are associated with hot massive clusters, and confirms the connection between radio halos and cluster merger processes. The comparison between the radio emission of the halo and the cluster X-ray emission shows a close structural similarity. A power law correlation is found between the radio and X-ray brightness, with index = 0.64. We also report the upper limit to the hard X-ray emission, obtained from a BeppoSAX observation. We discuss the implications of our results.Comment: 7 pages, 8 figures (5 in ps and 3 in gif), Accepted for publication in Astron. Astrop

    Nonthermal hard X-ray excess in the Coma cluster: resolving the discrepancy between the results of different PDS data analyses

    Get PDF
    The detection of a nonthermal excess in the Coma cluster spectrum by two BeppoSAX observations analyzed with the XAS package (Fusco-Femiano et al.) has been disavowed by an analysis (Rossetti & Molendi) performed with a different software package (SAXDAS) for the extraction of the spectrum. To resolve this discrepancy we reanalyze the PDS data considering the same software used by Rossetti & Molendi. A correct selection of the data and the exclusion of contaminating sources in the background determination show that also the SAXDAS analysis reports a nonthermal excess with respect to the thermal emission at about the same confidence level of that obtained with the XAS package (~4.8sigma). Besides, we report the lack of the systematic errors investigated by Rossetti & Molendi and Nevalainen et al. taking into account the whole sample of the PDS observations off the Galactic plane, as already shown in our data analysis of Abell 2256 (Fusco-Femiano, Landi & Orlandini). All this eliminates any ambiguity and confirms the presence of a hard tail in the spectrum of the Coma cluster.Comment: 12 pages, 2 figures. Accepted for publication in ApJ Letter

    Push & Pull: autonomous deployment of mobile sensors for a complete coverage

    Full text link
    Mobile sensor networks are important for several strategic applications devoted to monitoring critical areas. In such hostile scenarios, sensors cannot be deployed manually and are either sent from a safe location or dropped from an aircraft. Mobile devices permit a dynamic deployment reconfiguration that improves the coverage in terms of completeness and uniformity. In this paper we propose a distributed algorithm for the autonomous deployment of mobile sensors called Push&Pull. According to our proposal, movement decisions are made by each sensor on the basis of locally available information and do not require any prior knowledge of the operating conditions or any manual tuning of key parameters. We formally prove that, when a sufficient number of sensors are available, our approach guarantees a complete and uniform coverage. Furthermore, we demonstrate that the algorithm execution always terminates preventing movement oscillations. Numerous simulations show that our algorithm reaches a complete coverage within reasonable time with moderate energy consumption, even when the target area has irregular shapes. Performance comparisons between Push&Pull and one of the most acknowledged algorithms show how the former one can efficiently reach a more uniform and complete coverage under a wide range of working scenarios.Comment: Technical Report. This paper has been published on Wireless Networks, Springer. Animations and the complete code of the proposed algorithm are available for download at the address: http://www.dsi.uniroma1.it/~novella/mobile_sensors

    Distance and reddening of the Local Group dwarf irregular galaxy NGC 6822

    Full text link
    On the basis of a new photometric analysis of the Local Group dwarf irregular galaxy NCG 6822 based on observations obtained with the Advanced Camera for Surveys onboard the Hubble Space Telescope, we have obtained a new estimate of the extinction of two fields located in the southeast region of the galaxy. Because of significant differences in the distance estimates to NGC 6822 available in literature, we decided to provide an independent determination of the distance to this galaxy based on an updated and self-consistent theoretical calibration of the tip of the red giant branch brightness. As a result we newly determined the distance to NGC 6822 to be equal to (m−M)0=23.54±0.05{\rm(m-M)}_0=23.54\pm 0.05, and compared our measurement with the most recent determinations of this distance.Comment: 5 pages, 5 figures, Astronomy & Astrophysics (Research Note), in press (proof correction included

    Dissipative systems with constraints

    Get PDF
    • 

    corecore